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Catalysis by nucleic acids was merely a theoretical possibility
until the discovery of catalytic RNAs (ribozymes) in the early
1980s! Although a variety of natural ribozymes have since been
identified? analogous catalytic DNAs (deoxyribozymes) have not
been found in nature. In the laboratory, many artificial ribozymes
and deoxyribozymes have been identified through in vitro selection
by starting with pools of random sequenéebhe repertoire of
artificial ribozymes discovered in this fashion encompasses many
chemical reactions including phosphodiester cleavage and ligation,
RNA polymerizatiorf, redox reaction$, carbon-carbon bond
formation (Diels-Alder reaction);® and many other.Because
DNA catalysts were identified later than RIfand because natural
ribozymes provide a strong motivation to study artificial RNA
catalysts, the catalytic abilities of DNA have not been examined
as thoroughly as those for RNA.An early speculation was that
the lack of 2-hydroxyl groups in DNA would likely impair its
catalytic efficiency relative to RNA? providing a specific concern

about the functional range of DNA as a catalyst. The available data

for the most commonly studied DNA-catalyzed reaction, RNA
cleavagé? suggest that RNA and DNA should be equally com-

r.

o SN
D—Z:O{/\Og

DNA
3. PCR using
anthracene-
8] tethered
Vv o] primer
1NN S Ny (Diels-Alder
0 Y/ reaction) ?
DTME © Oy 4
2. HS v —
(trap product o]
— PAGE shift)

Figure 1. Strategy for in vitro selection of deoxyribozymes that catalyze
the Diels-Alder reaction.

petent, although in both cases the highest theoretically possible rate

enhancements have likely not been achieMed. this report we
investigated DNA catalysis of the Dietg\lder reaction, anticipating
that the results would allow a clear comparison between the catalytic
efficiencies of artificial ribozymes and deoxyribozymes for this
important carborrcarbon bond-forming reaction. We identified
deoxyribozymes that can catalyze the Dieddder reaction as
efficiently as the reported ribozymes, providing evidence that DNA
can be as catalytically efficient as RNA for<C bond formatiori>

We began by considering the Dielglder ribozyme that was
identified by Jachke and co-workers using in vitro selectfofhis
ribozyme catalyzes the bimolecular Diel&lder reaction between
suitably functionalized anthracene and maleimide substrates with
multiple turnover. The structural basis for catalysis has been
elucidated through X-ray crystallograpHy,and the scope of
substrate tolerance has been expldiedne minimal form of this
Diels—Alder ribozyme, 39M49, has 49 nucleotidegith 39M49
in mind, we arranged two parallel deoxyribozyme selection
experiments. In the first selection experiment, designated “DAR”
for “Diels—Alder Random”, we used an entirely random 40-
nucleotide (No) sequence pool. In the second selection experiment,
designated “DAB” for “Diels-Alder Biased”, we used a biased
(i.e., partially randomized) pool that was derived from the 39M49
ribozyme sequence but synthesized as DNA, with 36 nucleotides

Separately using the DAR and DAB pools, we performed in vitro
selection as illustrated in Figure'd The selection process was
initiated by primer extension on a DNA template using Taq
polymerase and a DNA oligonucleotide primer with anthracene
attached at the'&nd via a hexaethylene glycol (HEG) tether. Each
selection round consisted of three iterated steps: (1) Incubation
with DTME (dithiobismaleimidoethane) to allow the Dieldlder
reaction to proceed [the key selection step]; (2) Treatment with a
5'-thiol-DNA to attack the unreacted maleimide moiety of DTME,
followed by PAGE separation of the extended DNA strands; and
(3) PCR amplification to regenerate the anthracene-tethered DNA
pool, now enriched in catalytically active sequences. In each round,
the key selection step used incubation conditions of MM TME
in 50 mM Tris, pH 7.5, 200 mM N& and 100 mM K with 20
mM each M@" and C&" along with 5uM each Mi#+, Ce?t, CL2t,
and zZr#+ (all as CI salts) at 3C°C for 1 h; these were the same
ion concentrations used during the original ribozyme seleétion.

After 10 selection rounds, robust activities of 49% (DAR) and
33% (DAB) were observetf. After two additional rounds using
only a 5-min incubation during the DietAlder selection step
(leading to DAR and DAB activities of 18% and 13%), both round
12 pools were cloned, and individual deoxyribozyme clones were
screened for catalytic activity. Many active sequences were found
in both selection pool¥ One particular clone, DAB22, also showed

of the sequence partially randomized. Each of these 36 nucleotidescatalytic activity when testeth trans using the anthracene-HEG

had 70% probability of having the original nucleotide identity and ~ small-molecule substrate that was not covalently tethered to DNA
10% probability each of having the other three possible identities. (j.e., Anthr-HEG). DAB22 had 13 mutations relative to the parent
On this basis, the mean number of nucleotide differences between39M49 sequence, but its mfold-predicted secondary structure
the 39M49 ribozyme and an arbitrary DNA sequence from the revealed no apparent relationship to the parent riboZAfeere-
biased pool is ca. 11 nucleotides (30% of=3610.8), although a fore, although DAB22 originated from the biased pool, it is a new
wide range of mutations per sequence is statistically represented.catalytic sequenc¥. The enantioselectivity of DAB22 was not
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Figure 2. Diels—Alder catalysis by the DAB22 deoxyribozyme, as

monitored by the decrease in anthracene absorbance upon reaction of Anthr

HEG with DTME. See text for kinetic values and Supporting Information
for a complete description of the assays.

assayed experimentally; the enantiomer shown in Figure 1 is
arbitrarily depicted as the same one formed by 39M49.
Thein transapparent second-order rate constagiof DAB22

of any secondary structure relationship between DAB22 and 39M49
obviates sequence-function correlatfdms evidenced by com-
parison of both rate constants and rate enhancements, DAB22
catalyzes the DielsAlder reaction as efficiently as 39M49,
demonstrating experimentally that deoxyribozymes can be as
efficient as the known ribozymes for catalysis of~C bond
formation. These data with small-molecule substrates show that the
absence of '2hydroxyl groups in DNA relative to RNA is not an
inherent impediment to robust catalytic function, consistent with
findings that nucleic acids often rely on nucleobase functional
groups as key catalytic componefAtur ongoing efforts seek to
understand the mechanisms of deoxyribozyme catalysis and to
expand the utility of DNA for catalyzing a variety of chemical
reactions.
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